Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch
نویسندگان
چکیده
منابع مشابه
Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch.
Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh...
متن کاملThe Role of her4 in Inner Ear Development and Its Relationship with Proneural Genes and Notch Signalling
The generation of sensory neurons and hair cells of the inner ear is under tight control. Different members of the Hairy and Enhancer of Split genes (HES) are expressed in the inner ear, their full array of functions still not being disclosed. We have previously shown that zebrafish her9 acts as a patterning gene to restrict otic neurogenesis to an anterior domain. Here, we disclose the role of...
متن کاملThe Repression of Atoh1 by Neurogenin1 during Inner Ear Development
Atonal homolog 1 (Atoh1) and Neurogenin1 (Neurog1) are basic Helix-Loop-Helix (bHLH) transcription factors crucial for the generation of hair cells (HCs) and neurons in the inner ear. Both genes are induced early in development, but the expression of Atoh1 is counteracted by Neurog1. As a result, HC development is prevented during neurogenesis. This work aimed at understanding the molecular bas...
متن کاملEstablishment of a proneural field in the inner ear.
Hair-cells, supporting cells and sensory neurons are the main specialized cell-types responsible for mechanotransduction in the inner ear. They derive from precursors expressing proneural genes and recent data has underlined the importance of SoxB1 genes as upstream activators of proneural genes during cranial placode development. Here we review the steps of establishing a proneural field and p...
متن کاملIdentification of genes concordantly expressed with Atoh1 during inner ear development
The inner ear is composed of a cochlear duct and five vestibular organs in which mechanosensory hair cells play critical roles in receiving and relaying sound and balance signals to the brain. To identify novel genes associated with hair cell differentiation or function, we analyzed an archived gene expression dataset from embryonic mouse inner ear tissues. Since atonal homolog 1a (Atoh1) is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Development
سال: 2007
ISSN: 1477-9129,0950-1991
DOI: 10.1242/dev.02734