Yetter–Drinfel'd Modules for Group-Cograded Multiplier Hopf Algebras
نویسندگان
چکیده
منابع مشابه
The Drinfel’d double for group-cograded multiplier Hopf algebras
Let G be any group and let K(G) denote the multiplier Hopf algebra of complex functions with finite support in G. The product in K(G) is pointwise. The comultiplication on K(G) is defined with values in the multiplier algebra M(K(G)⊗K(G)) by the formula (∆(f))(p, q) = f(pq) for all f ∈ K(G) and p, q ∈ G. In this paper we consider multiplier Hopf algebras B (over C) such that there is an embeddi...
متن کاملQuasitriangular (G-cograded) multiplier Hopf algebras
We put the known results on the antipode of a usual quasitriangular Hopf algebra into the framework of multiplier Hopf algebras. We illustrate with examples which can not be obtained by using classical Hopf algebras. The focus of the present paper lies on the class of the so-called G-cograded multiplier Hopf algebras. By doing so, we bring the results of quasitriangular Hopf group-coalgebras (a...
متن کاملNOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS
In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition
متن کاملDoi-Hopf Modules over Weak Hopf Algebras
The theory of Doi-Hopf modules [7, 10] is generalized to Weak Hopf Algebras [1, 12, 2].
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2008
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927870802108080