Yet Another Proof of the Strong Law of Large Numbers
نویسندگان
چکیده
منابع مشابه
A Note on the Strong Law of Large Numbers
Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملOn the Strong Law of Large Numbers
N lim 1( 1: f(nkx)) = 0, N-N k_l or roughly speaking the strong law of large numbers holds for f(nkx) (in fact the authors prove that Ef(nkx)/k converges almost everywhere) . The question was raised whether (2) holds for any f(x) . This was known for the case nk=2k( 2) . In the present paper it is shown that this is not the case . In fact we prove the following theorem . THEOREM 1 . There exist...
متن کاملthe strong law of large numbers for pairwise negatively dependent random variables
in this paper, strong laws of large numbers (slln) are obtained for the sums ƒ°=nii x1, undercertain conditions, where {x ,n . 1} n is a sequence of pairwise negatively dependent random variables.
متن کاملYet Another Direct Proof of the Uncountability of the Transcendental Numbers
The most known proof of uncountability of the transcendental numbers is based on proving that A is countable and concluding that R\A is uncountable since R is. Very recently, J. Gaspar [1] gave a nice “direct” proof that the set of transcendental numbers is uncountable. In this context, the word direct means a proof which does not follow the previous steps. However, we point out that his proof ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Mathematical Monthly
سال: 2022
ISSN: ['1930-0972', '0002-9890']
DOI: https://doi.org/10.1080/00029890.2022.2115820