Yamamoto's Interpolation of Finite Multiple Zeta and Zeta-star Values

نویسندگان

چکیده

We study a polynomial interpolation of finite multiple zeta and zeta-star values with variable $t$, which is an analogue interpolated introduced by Yamamoto. introduce several relations among them and, in particular, prove the cyclic sum formula, Bowman--Bradley type weighted formula. The harmonic relation, shuffle duality derivation relation are also presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspectsof Multiple Zeta Values

Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuue product rule allows the possibility of a combi-natorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with ...

متن کامل

Multiple Zeta Values

for any collection of positive integers s1, s2, . . . , sl. By definition, Lis(1) = ζ(s), s ∈ Z, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (4.2) Taking, as before for multiple zeta values, Lixs(z) := Lis(z), Li1(z) := 1, (4.3) let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H (not H, since multi-indices are coded by words in H). Lemma 4.1. Let w ∈ H be an arbitrary non...

متن کامل

Multiple Zeta Values 17

It is now a good time to go back to the MZV story. where F (a, b; c; z) denotes the hypergeometric function and i = √ −1. Proof. Routine verification (with a help of Lemma 4.1 for the left-hand side) shows that the both sides of the required equality are annihilated by action of the differential operator (1 − z) d dz 2 z d dz 2 − t 4 ; in addition, the first terms in z-expansions of the both si...

متن کامل

Multiple q-zeta values

We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 2021

ISSN: ['0387-3870']

DOI: https://doi.org/10.3836/tjm/1502179339