Wind tunnel demonstration of galloping mitigation with a purely nonlinear energy sink

نویسندگان

چکیده

Abstract Galloping is a critical type of flow-induced vibration (FIV) arising on power transmission lines, high rise buildings, pipe and cables bundles in the oil gas industry. In this paper, we present purely nonlinear energy sink (NES) that mitigates galloping square prism. The NES composed ball rotating freely circular track attached to ball’s dynamics coupled prism way by inertia. We experimentally assess how simple reduces comparing amplitude responses with without NES. A supplementary video presents these experiments, during which exhibits different three regimes; oscillatory, intermittent, rotational. characterize behaviour its effect response each regime. oscillatory regime appears at low flow speeds both oscillate small amplitude. intermittent represents transition mode within range corresponds jump rotational higher speeds, where oscillates relatively angular resulting strong modulated design allows easily vary dimensions use sizes masses. Accordingly, demonstrate influence main parameters, are mass, radius, friction, radial clearance between walls ball, behaviour. directly amenable mitigate other types FIV.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Transient Dynamics of a Beam Mounted on Spring Supports and Equipped with the Nonlinear Energy Sink

The transient dynamics of a beam mounted on springer-damper support and equipped with a nonlinear energy sink (NES) is investigated under the effects of shock loads. The equations of motion are derived using the Hamilton’s principle leading to four hybrid ordinary and partial differential equations and descritized using the Galerkin method. An adaptive Newmark method is employed for accurate an...

متن کامل

CFD in Wind Energy: The Virtual, Multiscale Wind Tunnel

Over the past two decades, computational fluid dynamics and particularly the finite volume method have been increasingly used to predict the performance of wind turbines within their environment. Increases in available computational power has led to the application of RANS-based models to more and more complex flow problems and permitted the use of LES-based models where previously not possible...

متن کامل

An Investigation on Performance of Shrouding a Small Wind Turbine with a Simple Ring in a Wind Tunnel

Ducted wind turbines are a kind of small wind turbine having a diffuser or any other shape around the rotor which increases the air flow through the blades and absorbs more power. In the present study, a small wind turbine was ducted with a relatively simple ring and its performance was investigated in a wind tunnel. The duct is shaped using rolling steel sheets on a sloping surface and finally...

متن کامل

Shape optimization of a blunt body Vibro-wind galloping oscillator

The nonlinear dynamics of a transverse galloping blunt body oscillator is analyzed with respect to its geometric shape and size. The oscillator's equation of motion is studied using an approximation for the lateral aerodynamic force that is a polynomial function of the angle of attack. The harmonic balance method is used to solve the nonlinear differential equation of motion. This solution is u...

متن کامل

Harvesting Energy from Galloping Oscillations

The aim of this work is to exploit flow-induced vibration for energy harvesting. A cantilever beam carrying a tip mass in the form of a lightweight box having a square, triangular, or semicircular cross-section is designed to undergo galloping oscillations when subjected to an incoming wind stream. Electrical power is extracted from the self-excited flexural vibration of the beam through an ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fluids and Structures

سال: 2021

ISSN: ['1095-8622', '0889-9746']

DOI: https://doi.org/10.1016/j.jfluidstructs.2020.103169