Width-integrals and affine surface area of convex bodies

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Width-integrals and Affine Surface Area of Convex Bodies

The main purposes of this paper are to establish some new Brunn– Minkowski inequalities for width-integrals of mixed projection bodies and affine surface area of mixed bodies, together with their inverse forms.

متن کامل

Affine surface area and convex bodies of elliptic type

If a convex body K in R is contained in a convex body L of elliptic type (a curvature image), then it is known that the affine surface area of K is not larger than the affine surface area of L. We prove that the affine surface areas of K and L can only be equal if K = L. 2010 Mathematics Subject Classification: primary 52A10; secondary 53A15

متن کامل

Rényi Divergence and Lp-affine surface area for convex bodies

We show that the fundamental objects of the Lp-Brunn-Minkowski theory, namely the Lp-affine surface areas for a convex body, are closely related to information theory: they are exponentials of Rényi divergences of the cone measures of a convex body and its polar. We give geometric interpretations for all Rényi divergences Dα, not just for the previously treated special case of relative entropy ...

متن کامل

Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells

Given r > 1, we consider the minimal volume, minimal surface area and minimal mean width of convex bodies in E that contain a unit ball, and the extreme points are of distance at least r from the centre of the unit ball; more precisely, we investigate the difference of these minimums and of the volume, surface area and mean width, respectively, of the unit ball. As r tends to one, we describe t...

متن کامل

Affine Diameters of Convex Bodies

We prove sharp inequalities for the average number of affine diameters through the points of a convex body K in Rn. These inequalities hold if K is a polytope or of dimension two. An example shows that the proof given in the latter case does not extend to higher dimensions. The example also demonstrates that for n ≥ 3 there exist norms and convex bodies K ⊂ Rn such that the metric projection on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Journal of Mathematical Analysis

سال: 2008

ISSN: 1735-8787

DOI: 10.15352/bjma/1240336275