Whiskers and sequentially Cohen–Macaulay graphs
نویسندگان
چکیده
منابع مشابه
Whiskers and sequentially Cohen-Macaulay graphs
Let G be a simple (i.e., no loops and no multiple edges) graph. We investigate the question of how to modify G combinatorially to obtain a sequentially CohenMacaulay graph. We focus on modifications given by adding configurations of whiskers to G, where to add a whisker one adds a new vertex and an edge connecting this vertex to an existing vertex in G. We give various sufficient conditions and...
متن کاملSEQUENTIALLY Sr SIMPLICIAL COMPLEXES AND SEQUENTIALLY S2 GRAPHS
We introduce sequentially Sr modules over a commutative graded ring and sequentially Sr simplicial complexes. This generalizes two properties for modules and simplicial complexes: being sequentially Cohen-Macaulay, and satisfying Serre’s condition Sr . In analogy with the sequentially CohenMacaulay property, we show that a simplicial complex is sequentially Sr if and only if its pure i-skeleton...
متن کاملShellable graphs and sequentially Cohen-Macaulay bipartite graphs
Associated to a simple undirected graph G is a simplicial complex ∆G whose faces correspond to the independent sets of G. We call a graph G shellable if ∆G is a shellable simplicial complex in the non-pure sense of Björner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we cla...
متن کاملFurther Results on Sequentially Additive Graphs
Given a graph G with p vertices, q edges and a positive integer k, a k-sequentially additive labeling of G is an assignment of distinct numbers k, k + 1, k + 2, . . . , k + p + q − 1 to the p + q elements of G so that every edge uv of G receives the sum of the numbers assigned to the vertices u and v. A graph which admits such an assignment to its elements is called a k-sequentially additive gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2008
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2007.06.004