When the Zariski space is a Noetherian space
نویسندگان
چکیده
منابع مشابه
Menger probabilistic normed space is a category topological vector space
In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...
متن کاملThe Graded Classical Prime Spectrum with the Zariski Topology as a Notherian Topological Space
Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...
متن کاملNotes on the Zariski Tangent Space
For perspective, recall how we define the tangent space of a differentiable manifold M . We coverM by open neighborhoods Ui which are identified with R , and then we transfer our understanding of the tangent space at a point of R to define the tangent space at a point in Ui. This can be shown to be independent of choices. This approach is not a good idea for an affine algebraic set X because X ...
متن کاملProofs of Space: When Space Is of the Essence
Proofs of computational effort were devised to control denial of service attacks. Dwork and Naor (CRYPTO ’92), for example, proposed to use such proofs to discourage spam. The idea is to couple each email message with a proof of work that demonstrates the sender performed some computational task. A proof of work can be either CPU-bound or memory-bound. In a CPU-bound proof, the prover must comp...
متن کاملmenger probabilistic normed space is a category topological vector space
in this paper, we formalize the menger probabilistic normed space as a category in which its objects are the menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. so, we can easily apply the results of topological vector spaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2019
ISSN: 0019-2082
DOI: 10.1215/00192082-7773701