WHEN THE NAGATA RING D(X) IS A SHARP DOMAIN

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When is the ring of real measurable functions a hereditary ring?

‎Let $M(X‎, ‎mathcal{A}‎, ‎mu)$ be the ring of real-valued measurable functions‎ ‎on a measure space $(X‎, ‎mathcal{A}‎, ‎mu)$‎. ‎In this paper‎, ‎we characterize the maximal ideals in the rings of real measurable functions‎ ‎and as a consequence‎, ‎we determine when $M(X‎, ‎mathcal{A}‎, ‎mu)$ is a hereditary ring.

متن کامل

The Nagata automorphism is wild.

It is proved that the well known Nagata automorphism of the polynomial ring in three variables over a field of characteristic zero is wild, that is, it can not be decomposed into a product of elementary automorphisms.

متن کامل

Chromophores in Molecular Nanorings: When Is a Ring a Ring?

The topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully π-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppressed as a result of symmetry constraints. In contrast, the simple Kasha model predicts an enhancem...

متن کامل

When Is the Semigroup Ring Perfect?

A characterization of perfect semigroup rings A[G] is given by means of the properties of the ring A and the semigroup G. It was proved in [10] that for a ring with unity A and a group G the group ring A[G] is perfect if and only if A is perfect and G is finite. Some results on perfectness of semigroup rings were obtained by Domanov [3]. He reduced the problem of describing perfect semigroup ri...

متن کامل

The Grothendieck Ring of Varieties Is Not a Domain

If k is a field, the ring K0(Vk) is defined as the free abelian group generated by the isomorphism classes of geometrically reduced k-varieties modulo the set of relations of the form [X − Y ] = [X] − [Y ] whenever Y is a closed subvariety of X. The multiplication is defined using the product operation on varieties. We prove that if the characteristic of k is zero, then K0(Vk) is not a domain. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Korean Journal of Mathematics

سال: 2016

ISSN: 1976-8605

DOI: 10.11568/kjm.2016.24.3.537