Weyl connections and the local sphere theorem for quaternionic contact structures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Quaternionic Contact Curvature and the Local Sphere Theorem

Abstract. A curvature-type tensor invariant called quaternionic contact (qc) conformal curvature is defined on a qc manifolds in terms of the curvature and torsion of the Biquard connection. The discovered tensor is similar to the Weyl conformal curvature in Riemannian geometry and to the Chern-Moser invariant in CR geometry. It is shown that a qc manifold is locally qc conformal to the standar...

متن کامل

Quaternionic Connections, Induced Holomorphic Structures and a Vanishing Theorem

We classify the holomorphic structures of the tangent vertical bundle Θ of the twistor fibration of a quaternionic manifold (M, Q) of dimension 4n ≥ 8. Using a Penrose transform we show that, when (M, Q) is compact and admits a compatible quaternionic-Kähler metric of negative scalar curvature, Θ admits no global non-trivial holomorphic sections with respect to any of its holomorphic structures...

متن کامل

Quaternionic connections, induced holomorphic structures and a vanishing theorem

We classify the holomorphic structures of the tangent vertical bundle Θ of the twistor fibration of a quaternionic manifold (M,Q) of dimension 4n ≥ 8. In particular, we show that any self-dual quaternionic connection D of (M,Q) induces an holomorphic structure ∂̄ on Θ. We construct a Penrose transform which identifies solutions of the Penrose operator P on (M,Q) defined by D with the space of ∂̄-...

متن کامل

Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem

A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal deformations sending the standard flat torsion-free quaternionic contac...

متن کامل

Conformal Quaternionic Contact Curvature and the Local Sphere Theorem. La Courbure Conforme D’une Structure De Contact Quaternionienne Et Structures Localment Plates

A tensor invariant is defined on a quaternionic contact manifold in terms of the curvature and torsion of the Biquard connection involving derivatives up to third order of the contact form. This tensor, called quaternionic contact conformal curvature, is similar to the Weyl conformal curvature in Riemannian geometry and to the Chern-Moser tensor in CR geometry. It is shown that a quaternionic c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2010

ISSN: 0232-704X,1572-9060

DOI: 10.1007/s10455-010-9228-y