Well-posedness of renormalized solutions for a stochastic p -Laplace equation with L^1 -initial data

نویسندگان

چکیده

We consider a $ p $-Laplace evolution problem with stochastic forcing on bounded domain D\subset\mathbb{R}^d homogeneous Dirichlet boundary conditions for 1<p<\infty $. The additive noise term is given by integral in the sense of Itô. technical difficulties arise from merely integrable random initial data u_0 under consideration. Due to poor regularity data, estimates W^{1,p}_0(D) are available respect truncations solution only and therefore well-posedness results have be formulated generalized solutions. extend notion renormalized this type SPDEs, show setting study Markov properties

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data

The Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition is considered. Local well-posedness for data u0 in the space b H r (T), defined by the norms ‖u0‖ b Hs r (T) = ‖〈ξ〉 s b u0‖lr′ ξ , is shown in the parameter range s ≥ 1 2 , 2 > r > 4 3 . The proof is based on an adaptation of the gauge transform to the periodic setting and an appropriate varian...

متن کامل

Well-posedness of the Muskat problem with H2 initial data

Article history: Received 30 December 2014 Accepted 13 August 2015 Available online xxxx Communicated by Charles Fefferman MSC: 35R35 35Q35 35S10 76B03

متن کامل

Global Well-posedness of the Landau-lifshitz-gilbert Equation for Initial Data in Morrey Space

We establish the global well-posedness of the Landau-Lifshitz-Gilbert equation in Rn for any initial data m0 ∈ H1 ∗(R, S2) whose gradient belongs to the Morrey space M2,2(Rn) with small norm ‖∇m0‖M2,2(Rn). The method is based on priori estimates of a dissipative Schrödinger equation of GinzburgLandau types obtained from the Landau-Lifshitz-Gilbert equation by the moving frame technique.

متن کامل

Almost global well-posedness of Kirchhoff equation with Gevrey data

Article history: Received 26 November 2016 Accepted after revision 3 April 2017 Available online 18 April 2017 Presented by the Editorial Board The aim of this note is to present the almost global well-posedness result for the Cauchy problem for the Kirchhoff equation with large data in Gevrey spaces. We also briefly discuss the corresponding results in bounded and in exterior domains. © 2017 A...

متن کامل

Well-posedness of the transport equation by stochastic perturbation

We consider the linear transport equation with a globally Hölder continuous and bounded vector field, with an integrability condition on the divergence. While uniqueness may fail for the deterministic PDE, we prove that a multiplicative stochastic perturbation of Brownian type is enough to render the equation well-posed. This seems to be the first explicit example of partial differential equati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2020367