Well-posedness for the fifth-order KdV equation in the energy space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case

We prove that the KdV-Burgers is globally well-posed in H−1(T) with a solution-map that is analytic fromH−1(T) to C([0, T ];H−1(T)) whereas it is ill-posed in Hs(T), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(T) to even D′(T) at any fixed t > 0 small enough. In view of the result of Kappeler and Topalov for KdV it thus appears that even if the dis...

متن کامل

Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case

We complete the known results on the Cauchy problem in Sobolev spaces for the KdV-Burgers equation by proving that this equation is well-posed in H−1(R) with a solution-map that is analytic from H−1(R) to C([0, T ];H−1(R)) whereas it is ill-posed in Hs(R), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(R) to even D′(R) at any fixed t > 0 small enough....

متن کامل

Remark on Well-posedness and Ill-posedness for the Kdv Equation

We consider the Cauchy problem for the KdV equation with low regularity initial data given in the space Hs,a(R), which is defined by the norm ‖φ‖Hs,a = ‖〈ξ〉s−a|ξ|a b φ‖L2 ξ . We obtain the local well-posedness in Hs,a with s ≥ max{−3/4,−a − 3/2}, −3/2 < a ≤ 0 and (s, a) 6= (−3/4,−3/4). The proof is based on Kishimoto’s work [12] which proved the sharp well-posedness in the Sobolev space H−3/4(R...

متن کامل

Global well-posedness in the Energy space for the Benjamin-Ono equation on the circle

We prove that the Benjamin-Ono equation is well-posed in H(T). This leads to a global well-posedeness result in H(T) thanks to the energy conservation. Résumé. Nous montrons que l’équation de Benjamin-Ono est bien posée dans H(T). Il découle alors de la conservation de l’énergie que la solution existe pour tout temps dans cette espace.

متن کامل

Sharp Global Well - Posedness for Kdv and Modified Kdv On

The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2014

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2014-05982-5