Weil classes on abelian varieties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsion of Abelian Varieties, Weil Classes and Cyclotomic Extensions

Let K ⊂ C be a field finitely generated over Q, K(a) ⊂ C the algebraic closure of K, G(K) = Gal(K(a)/K its Galois group. For each positive integer m we write K(μm) for the subfield of K(a) obtained by adjoining to K all mth roots of unity. For each prime l we write K(l) for the subfield of K(a) obtained by adjoining to K all l−power roots of unity. We write K(c) for the subfield of K(a) obtaine...

متن کامل

Lefschetz Classes on Abelian Varieties

Then C∼(X) df = ⊕sC ∼(X) becomes a graded Q-algebra under the intersection product, and we define D∼(X) to be the Q-subalgebra of C∼(X) generated by the divisor classes: D∼(X) = Q[C ∼(X)]. The elements of D∼(X) will be called the Lefschetz classes on X (for the relation ∼). They are the algebraic classes on X expressible as linear combinations of intersections of divisor classes (including the ...

متن کامل

Abelian Varieties of Weil Type and Kuga-satake Varieties

We analyze the relationship between abelian fourfolds of Weil type and Hodge structures of type K3, and we extend some of these correspondences to the case of arbitrary dimension.

متن کامل

On the Structure of Weil Restrictions of Abelian Varieties

We give a description of endomorphism rings of Weil restrictions of abelian varieties with respect to finite Galois extensions of fields. The results are applied to study the isogeny decompositions of Weil restrictions. 2000 Mathematics Subject Classification Primary: 14K15, Secondary: 11G10.

متن کامل

Weil conjectures for abelian varieties over finite fields

This is an expository paper on zeta functions of abelian varieties over finite fields. We would like to go through how zeta function is defined, and discuss the Weil conjectures. The main purpose of this paper is to fill in more details to the proofs provided in Milne. Subject to length constrain, we will not include a detailed proof for Riemann hypothesis in this paper. We will mainly be follo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 1998

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crll.1998.034