Weighted quantitative isoperimetric inequalities in the Grushin space R h + 1 ${R}^{h+1}$ with density | x | p $|x|^{p}$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Isoperimetric Problem in the Grushin Space R With Density |x|

In this paper we study the isoperimetric problem in a class of x-spherically symmetric sets in the Grushin space R with density |x|, p > −h + 1. First we prove the existence of weighted isoperimetric sets. Then we deduce that, up to a vertical translation, a dilation and a negligible set, the weighted isoperimetric set is only of the form { (x, y) ∈ R : |y| < ∫ π 2 arcsin |x| sin (t)dt, |x| < 1...

متن کامل

Quantitative Isoperimetric Inequalities in H

In the Heisenberg group H, n ≥ 1, we prove quantitative isoperimetric inequalities for Pansu’s spheres, that are known to be isoperimetric under various assumptions. The inequalities are shown for suitably restricted classes of competing sets and the proof relies on the construction of sub-calibrations.

متن کامل

On weighted isoperimetric and Poincaré-type inequalities

Weighted isoperimetric and Poincaré-type inequalities are studied for κ-concave probability measures (in the hierarchy of convex measures).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2017

ISSN: 1029-242X

DOI: 10.1186/s13660-017-1437-5