Weighted quantitative isoperimetric inequalities in the Grushin space R h + 1 ${R}^{h+1}$ with density | x | p $|x|^{p}$
نویسندگان
چکیده
منابع مشابه
The Isoperimetric Problem in the Grushin Space R With Density |x|
In this paper we study the isoperimetric problem in a class of x-spherically symmetric sets in the Grushin space R with density |x|, p > −h + 1. First we prove the existence of weighted isoperimetric sets. Then we deduce that, up to a vertical translation, a dilation and a negligible set, the weighted isoperimetric set is only of the form { (x, y) ∈ R : |y| < ∫ π 2 arcsin |x| sin (t)dt, |x| < 1...
متن کاملQuantitative Isoperimetric Inequalities in H
In the Heisenberg group H, n ≥ 1, we prove quantitative isoperimetric inequalities for Pansu’s spheres, that are known to be isoperimetric under various assumptions. The inequalities are shown for suitably restricted classes of competing sets and the proof relies on the construction of sub-calibrations.
متن کاملWeighted quantitative isoperimetric inequalities in the Grushin space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${R}^{h+1}$\end{document}Rh+1 with density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|x|^{p}$\end{document}|x|p
*Correspondence: [email protected] 1School of Science, Nanjing University of Science and Technology, Nanjing, 210094, China 2School of Mathematics and Computer Science, Anhui Normal University, Wuhu, 241000, China Abstract In this paper, we prove weighted quantitative isoperimetric inequalities for the set Eα = {(x, y) ∈ Rh+1 : |y| < ∫ π 2 arcsin |x| sin α+1(t)dt, |x| < 1} in half-cylind...
متن کاملOn weighted isoperimetric and Poincaré-type inequalities
Weighted isoperimetric and Poincaré-type inequalities are studied for κ-concave probability measures (in the hierarchy of convex measures).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2017
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1437-5