Weighted multiple ergodic averages and correlation sequences
نویسندگان
چکیده
منابع مشابه
Convergence of weighted polynomial multiple ergodic averages
In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...
متن کاملPointwise Convergence of Some Multiple Ergodic Averages
We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...
متن کاملMultifractal analysis of some multiple ergodic averages
In this paper we study the multiple ergodic averages 1 n n ∑ k=1 φ(xk, xkq , · · · , xkql−1 ), (xn) ∈ Σm on the symbolic space Σm = {0, 1, · · · ,m− 1}N ∗ where m ≥ 2, l ≥ 2, q ≥ 2 are integers. We give a complete solution to the problem of multifractal analysis of the limit of the above multiple ergodic averages. Actually we develop a non-invariant and non-linear version of thermodynamic forma...
متن کاملPowers of sequences and convergence of ergodic averages
A sequence (sn) of integers is good for the mean ergodic theorem if for each invertible measure preserving system (X, B, µ, T) and any bounded measurable function f , the averages 1 N P N n=1 f (T sn x) converge in the L 2 (µ) norm. We construct a sequence (sn) that is good for the mean ergodic theorem, but the sequence (s 2 n) is not. Furthermore, we show that for any set of bad exponents B, t...
متن کاملMultiple Ergodic Averages for Three Polynomials and Applications
We find the smallest characteristic factor and a limit formula for the multiple ergodic averages associated to any family of three polynomials and polynomial families of the form {l1p, l2p, . . . , lkp}. We then derive several multiple recurrence results and combinatorial implications, including an answer to a question of Brown, Graham, and Landman, and a generalization of the Polynomial Szemer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2016
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2016.19