Weighted doubling measures with remotely constant weights
نویسندگان
چکیده
منابع مشابه
Weighted inequalities for generalized polynomials with doubling weights
Many weighted polynomial inequalities, such as the Bernstein, Marcinkiewicz, Schur, Remez, Nikolskii inequalities, with doubling weights were proved by Mastroianni and Totik for the case [Formula: see text], and by Tamás Erdélyi for [Formula: see text]. In this paper we extend such polynomial inequalities to those for generalized trigonometric polynomials. We also prove the large sieve for gene...
متن کاملDavenport constant with weights
For the cyclic group G = Z/nZ and any non-empty A ∈ Z. We define the Davenport constant of G with weight A, denoted by DA(n), to be the least natural number k such that for any sequence (x1, · · · , xk) with xi ∈ G, there exists a non-empty subsequence (xj1, · · · , xjl) and a1, · · · , al ∈ A such that ∑l i=1 aixji = 0. Similarly, we define the constant EA(n) to be the least t ∈ N such that fo...
متن کاملNotes on Inequalities with Doubling Weights
Various important weighted polynomial inequalities, such as Bernstein, Marcinkiewicz, Nikolskii, Schur, Remez, etc. inequalities, have been proved recently by Giuseppe Mastroianni and Vilmos Totik under minimal assumptions on the weights. In most of the cases this minimal assumption is the doubling condition. Sometimes however, like in the weighted Nikolskii inequality, the slightly stronger A∞...
متن کاملBesov Spaces with Non-doubling Measures
Suppose that μ is a Radon measure on Rd, which may be nondoubling. The only condition on μ is the growth condition, namely, there is a constant C0 > 0 such that for all x ∈ supp (μ) and r > 0, μ(B(x, r)) ≤ C0r, where 0 < n ≤ d. In this paper, the authors establish a theory of Besov spaces Ḃs pq(μ) for 1 ≤ p, q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on the non-doubling measu...
متن کاملMultivariate polynomial inequalities with respect to doubling weights and A∞ weights
In one-dimensional case, various important, weighted polynomial inequalities, such as Bernstein, Marcinkiewicz–Zygmund, Nikolskii, Schur, Remez, etc., have been proved under the doubling condition or the slightly stronger A∞ condition on the weights by Mastroianni and Totik in a recent paper [G. Mastroianni, V. Totik, Weighted polynomial inequalities with doubling and A∞ weights, Constr. Approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2015
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1506343t