Weighted Davis Inequalities for Martingale Square Functions
نویسندگان
چکیده
Abstract For a Hilbert space-valued martingale $$(f_{n})$$ ( f n ) and an adapted sequence of positive random variables $$(w_{n})$$ w , we show the weighted Davis-type inequality $$\begin{aligned} {\mathbb {E}}\left( {|}f_{0}{|} w_{0} + \frac{1}{4} \sum _{n=1}^{N} \frac{{|}df_{n}{|}^{2}}{f^{*}_{n}} w_{n} \right) \le {E}}( f^{*}_{N} w^{*}_{N}). \end{aligned}$$ E | 0 + 1 4 ∑ = N d 2 ∗ ≤ . More generally, for with values in $$(q,\delta )$$ q , δ -uniformly convex Banach space, that \delta _{n=1}^{\infty } \frac{{|}df_{n}{|}^{q}}{(f^{*}_{n})^{q-1}} C_{q} f^{*} w^{*}). ∞ - C These inequalities unify several results about square function.
منابع مشابه
Davis-type Theorems for Martingale Difference Sequences
We study Davis-type theorems on the optimal rate of convergence of moderate deviation probabilities. In the case of martingale difference sequences, under the finite pth moments hypothesis (1 ≤ p <∞), and depending on the normalization factor, our results show that Davis’ theorems either hold if and only if p > 2 or fail for all p ≥ 1. This is in sharp contrast with the classical case of i.i.d....
متن کاملWeighted Multidimensional Inequalities for Monotone Functions
Let + := {(x1, . . . , xN ) ; xi 0, i = 1, 2, . . . , N} and + := + . Assume that f : + → + is monotone which means that it is monotone with respect to each variable. We denote f ↓, when f is decreasing (= nonincreasing) and f ↑ when f is increasing (= nondecreasing). Throughout this paper ω, u, v are positive measurable functions defined on + , N 1. A function P on [0,∞) is called a modular fu...
متن کاملSufficient Inequalities for Univalent Functions
In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.
متن کاملNew integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملNon-commutative Martingale Inequalities
We prove the analogue of the classical Burkholder-Gundy inequalites for noncommutative martingales. As applications we give a characterization for an Ito-Clifford integral to be an L-martingale via its integrand, and then extend the Ito-Clifford integral theory in L, developed by Barnett, Streater and Wilde, to L for all 1 < p < ∞. We include an appendix on the non-commutative analogue of the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Probability
سال: 2022
ISSN: ['1572-9230', '0894-9840']
DOI: https://doi.org/10.1007/s10959-022-01204-x