منابع مشابه
Ternary Constant Weight Codes
Let A3(n, d,w) denote the maximum cardinality of a ternary code with length n, minimum distance d, and constant Hamming weight w. Methods for proving upper and lower bounds on A3(n, d,w) are presented, and a table of exact values and bounds in the range n ≤ 10 is given.
متن کاملOn diameter perfect constant-weight ternary codes
From cosets of binary Hamming codes we construct diameter perfect constantweight ternary codes with weight n − 1 (where n is the code length) and distances 3 and 5. The class of distance 5 codes has parameters unknown before.
متن کاملOn Perfect Ternary Constant Weight Codes
We consider the space of ternary words of length n and fixed weightwwith the usual Hamming distance. A sequence of perfect single error correcting codes in this space is constructed. We prove the nonexistence of such codes with other parameters than those of the sequence.
متن کاملSome ternary cubic two-weight codes
We study trace codes with defining set L, a subgroup of the multiplicative group of an extension of degree m of the alphabet ring F3+uF3+u 2 F3, with u 3 = 1. These codes are abelian, and their ternary images are quasi-cyclic of co-index three (a.k.a. cubic codes). Their Lee weight distributions are computed by using Gauss sums. These codes have three nonzero weights when m is singly-even and |...
متن کاملMinimum Weight and Dimension Formulas for Some Geometric Codes
The geometric codes are the duals of the codes defined by the designs associated with finite geometries. The latter are generalized Reed-Muller codes, but the geometric codes are, in general, not. We obtain values for the minimum weight of these codes in the binary case, using geometric constructions in the associated geometries, and the BCH bound from coding theory. Using Hamada’s formula, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1992
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1992-1122080-4