WEB Image Classification using Classifier Combination
نویسندگان
چکیده
منابع مشابه
Learning the Classifier Combination for Image Classification
Although some image features and algorithms succeed in many tasks such as scene recognition and face recognition, carefully choosing image features and classifiers are time consuming for a specific image classification task. In this paper, we propose a method that automatically combines the classifiers with probability outputs from different features. We fomulate the problem in quadric programm...
متن کاملSpoken language classification using hybrid classifier combination
In this paper we describe an approach for spoken language analysis for helpdesk call routing using a combination of simple recurrent networks and support vector machines. In particular we examine this approach for its potential in a difficult spoken language classification task based on recorded operator assistance telephone utterances. We explore simple recurrent networks and support vector ma...
متن کاملImage Classification Using Naïve Bayes Classifier
An image classification scheme using Naïve Bayes Classifier is proposed in this paper. The proposed Naive Bayes Classifier-based image classifier can be considered as the maximum a posteriori decision rule. The Naïve Bayes Classifier can produce very accurate classification results with a minimum training time when compared to conventional supervised or unsupervised learning algorithms. Compreh...
متن کاملImage Classification Using Naive Bayes Classifier With Pairwise Local Observations
We propose a pairwise local observation-based Naive Bayes (NBPLO) classifier for image classification. First, we find the salient regions (SRs) and the Keypoints (KPs) as the local observations. Second, we describe the discriminative pairwise local observations using Bag-of-features (BoF) histogram. Third, we train the object class models by using random forest to develop the NBPLO classifier f...
متن کاملTransparent, Online Image Pattern Classification Using a Learning Classifier System
Image pattern classification in computer vision problems is challenging due to large, sparse input spaces with the added demand for generalisation and accuracy of results. The Evolutionary Computation technique of Learning Classifier Systems (LCS) addresses such problems, but has not been applied previously to this domain. Instead, offline, supervised techniques on fixed data sets have been sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Latin America Transactions
سال: 2008
ISSN: 1548-0992
DOI: 10.1109/tla.2008.4917439