Weak Solutions and Optimal Control of Hemivariational Evolutionary Navier-Stokes Equations under Rauch Condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangian Approximations and Weak Solutions of the Navier-Stokes Equations

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian re...

متن کامل

Optimal Control of Navier - Stokes Equations 1

In this paper we study optimal control problems of the uid ow governed by the Navier-Stokes equations. Two control problems are formulated in the case of the driven cavity and ow through a channel with sudden expansion and solved successfully using a numerical method based on the augmented Lagrangian method. Existence and rst order optimality condition of the optimal control are established. A ...

متن کامل

On the Uniqueness of Weak Solutions of Navier-Stokes Equations: Remarks on a Clay Institute Prize Problem Uniqueness of Weak Solutions of Navier-Stokes Equations

We consider the Clay Institute Prize Problem asking for a mathematical analytical proof of existence, smoothness and uniqueness (or a converse) of solutions to the incompressible Navier-Stokes equations. We argue that the present formulation of the Prize Problem asking for a strong solution is not reasonable in the case of turbulent flow always occuring for higher Reynolds numbers, and we propo...

متن کامل

ON OPTIMAL DECAY RATES FOR WEAK SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN n

0 ∇ · e−(t−s)AP (u⊗ u)(s) ds, for prescribed initial velocity a(x) = (a1(x), . . . , an(x)), x = (x1, . . . , xn) ∈ n , and unknown velocity u(x, t) = (u1(x, t), . . . , un(x, t)). Here, A = −∆ is the Laplacian on n ; {e−tA}t 0 is the heat semigroup; P = (Pjk) is the bounded projection onto divergence-free vector fields; u ⊗ v is the matrix with entries (u ⊗ v)jk = ujvk; ∇ = (∂1, . . . , ∂n) wi...

متن کامل

Optimal and instantaneous control of the instationary Navier-Stokes equations

Contents Danksagung 1 Chapter 1. Introduction 5 1. Aims and scope of flow control 5 2. A brief review in active flow control 8 Chapter 2. Notation and preliminary results 15 1. Quasi-Stokes problems 15 2. Instationary Navier-Stokes equations in 2d 16 3. Navier-Stokes numerics 19 Chapter 3. Optimal control of the instationary Navier-Stokes equations 23 1. The optimal control problem 23 2. Deriva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces

سال: 2020

ISSN: 2314-8888,2314-8896

DOI: 10.1155/2020/6573219