Wavelet shrinkage for nonequispaced samples

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Shrinkage for Nonequispaced Samples

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

Wavelet Shrinkage for Unequally Spaced Data Wavelet Shrinkage for Unequally Spaced Data

Wavelet shrinkage (WaveShrink) is a relatively new technique for nonparametric function estimation that has been shown to have asymptotic near-optimality properties over a wide class of functions. As originally formulated by Donoho and Johnstone, WaveShrink assumes equally spaced data. Because so many statistical applications (e.g., scatterplot smoothing) naturally involve unequally spaced data...

متن کامل

Rotationally Invariant Wavelet Shrinkage

Most two-dimensional methods for wavelet shrinkage are efficient for edge-preserving image denoising, but they suffer from poor rotation invariance. We address this problem by designing novel shrinkage rules that are derived from rotationally invariant nonlinear diffusion filters. The resulting Haar wavelet shrinkage methods are computationally inexpensive and they offer substantially improved ...

متن کامل

Bayesian Wavelet Shrinkage

Bayesian wavelet shrinkage methods are defined through a prior distribution on the space of wavelet coefficients after a Discrete Wavelet Transformation has been applied to the data. Posterior summaries of the wavelet coefficients establish a Bayes shrinkage rule. After the Bayes shrinkage is performed, an Inverse Discrete Wavelet Transformation can be used to recover the signal that generated ...

متن کامل

Wavelet Shrinkage: Asymptopia?

Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nite-dimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearlyor exactlyminimax estimators being obtained for a variety of interesting problems. Unfortunately, the results have often not been tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1998

ISSN: 0090-5364

DOI: 10.1214/aos/1024691357