Wavelet Collocation Method for Solving Multiorder Fractional Differential Equations
نویسندگان
چکیده
منابع مشابه
Wavelet Collocation Method for Solving Multiorder Fractional Differential Equations
The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملWavelet Galerkin Method for Solving Stochastic Fractional Differential Equations
Stochastic fractional differential equations (SFDEs) have many physical applications in the fields of turbulance, heterogeneous, flows and matrials, viscoelasticity and electromagnetic theory. In this paper, a new wavelet Galerkin method is proposed for numerical solution of SFDEs. First, fractional and stochastic operational matrices for the Chebyshev wavelets are introduced. Then, these opera...
متن کاملAn approximate method for solving fractional system differential equations
IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2012
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2012/542401