Waveform Relaxation with Overlapping Splittings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Advection Problems and Overlapping Schwarz Waveform Relaxation

We analyze the convergence behavior of the overlapping Schwarz waveform relaxation algorithm applied to nonlinear advection problems. We show for Burgers’ equation that the algorithm converges super-linearly at a rate which is asymptotically comparable to the rate of the algorithm applied to linear advection problems. The convergence rate depends on the overlap and the length of the time interv...

متن کامل

Overlapping Schwarz Waveform Relaxation for Convection-Dominated Nonlinear Conservation Laws

We analyze the convergence of the overlapping Schwarz waveform relaxation algorithm applied to convection-dominated nonlinear conservation laws in one spatial dimension. For two subdomains and bounded time intervals we prove superlinear asymptotic convergence of the algorithm in the parabolic case and convergence in a finite number of steps in the hyperbolic limit. The convergence results depen...

متن کامل

A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations

Waveform relaxation is a technique to solve large systems of ordinary differential equations (ODEs) in parallel. The right hand side of the system is split into subsystems which are only loosely coupled. One then solves iteratively all the subsystems in parallel and exchanges information after each step of the iteration. Two classical convergence results state linear convergence on unbounded ti...

متن کامل

Waveform Relaxation for Functional-diierential Equations Waveform Relaxation for Functional-diierential Equations Waveform Relaxation for Functional-differential Equations

The convergence of waveform relaxation techniques for solving functional-diierential equations is studied. New error estimates are derived that hold under linear and nonlinear conditions for the right-hand side of the equation. Sharp error bounds are obtained under generalized time-dependent Lipschitz conditions. The convergence of the waveform method and the quality of the a priori error bound...

متن کامل

Parareal Schwarz Waveform Relaxation Methods

Solving an evolution problem in parallel is naturally undertaken by trying to parallelize the algorithm in space, and then still follow a time stepping method from the initial time t = 0 to the final time t = T . This is especially easy to do when an explicit time stepping method is used, because in that case the time step for each component is only based on past, known data, and the time stepp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 1995

ISSN: 1064-8275,1095-7197

DOI: 10.1137/0916004