Waveform Relaxation Methods for Functional Differential Systems of Neutral Type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waveform Relaxation for Functional-diierential Equations Waveform Relaxation for Functional-diierential Equations Waveform Relaxation for Functional-differential Equations

The convergence of waveform relaxation techniques for solving functional-diierential equations is studied. New error estimates are derived that hold under linear and nonlinear conditions for the right-hand side of the equation. Sharp error bounds are obtained under generalized time-dependent Lipschitz conditions. The convergence of the waveform method and the quality of the a priori error bound...

متن کامل

Waveform relaxation methods for implicit differential equations

We apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems increases linearly with the number of stages of the underlying Runge-Kutta method, resulting in high linear alg...

متن کامل

Waveform Relaxation Methods for Stochastic Differential Equations

The solution of complex and large scale systems plays a crucial role in recent scientific computations. In particular, large scale stochastic dynamical systems represent very complex systems incorporating the random appearances of physical processes in nature. The development of efficient numerical methods to study such large scale systems, which can be characterized as weakly coupled subsystem...

متن کامل

Waveform Relaxation for Functional-Differential Equations

The convergence of waveform relaxation techniques for solving functional-diierential equations is studied. New error estimates are derived that hold under linear and nonlinear conditions for the right-hand side of the equation. Sharp error bounds are obtained under generalized time-dependent Lipschitz conditions. The convergence of the waveform method and the quality of the a priori error bound...

متن کامل

Preconditioning Waveform Relaxation Iterations for Differential Systems

We discuss preconditioning and overlapping of waveform relaxation methods for sparse linear diierential systems. It is demonstrated that these techniques signiicantly improve the speed of convergence of the waveform relaxation iterations resulting from application of various modes of block Gauss-Jacobi and block Gauss-Seidel methods to diierential systems. Numerical results are presented for li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1997

ISSN: 0022-247X

DOI: 10.1006/jmaa.1997.5308