Wallis formula from the harmonic oscillator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizing Wallis' Formula

The present note generalizes Wallis’ formula, 2  =  . 7 6 . 5 6 . 5 4 . 3 4 . 3 2 . 1 2 , using the EulerMascheroni constant g and the Glaisher-Kinkelin constant A: 2 ln 2 4 = 3 3 2 . 1 2 . 5 4 3 4

متن کامل

Padé approximant related to the Wallis formula

Based on the Padé approximation method, in this paper we determine the coefficients [Formula: see text] and [Formula: see text] such that [Formula: see text] where [Formula: see text] is any given integer. Based on the obtained result, we establish a more accurate formula for approximating π, which refines some known results.

متن کامل

Radiation from a uniformly accelerating harmonic oscillator

We consider a radiation from a uniformly accelerating harmonic oscillator whose minimal coupling to the scalar field changes suddenly. The exact time evolutions of the quantum operators are given in terms of a classical solution of a forced harmonic oscillator. After the jumping of the coupling constant there occurs a fast absorption of energy into the oscillator, and then a slow emission follo...

متن کامل

Special value formula for the spectral zeta function of the non-commutative harmonic oscillator

This series is absolutely convergent in the region Rs > 1, and defines a holomorphic function in s there. We call this function ζQ(s) the spectral zeta function for the non-commutative harmonic oscillator Q, which is introduced and studied by Ichinose and Wakayama [1]. The zeta function ζQ(s) is analytically continued to the whole complex plane as a single-valued meromorphic function which is h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2018

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2017.11.007