Wakimoto Modules for Twisted Affine Lie Algebras
نویسندگان
چکیده
منابع مشابه
Explicit description of twisted Wakimoto realizations of affine Lie algebras
In a vertex algebraic framework, we present an explicit description of the twisted Wakimoto realizations of the affine Lie algebras in correspondence with an arbitrary finite order automorphism and a compatible integral gradation of a complex simple Lie algebra. This yields generalized free field realizations of the twisted and untwisted affine Lie algebras in any gradation. The free field form...
متن کاملOn certain categories of modules for twisted affine Lie algebras
In this paper, using generating functions we study two categories E and C of modules for twisted affine Lie algebras ĝ[σ], which were firstly introduced and studied in [Li] for untwisted affine Lie algebras. We classify integrable irreducible ĝ[σ]-modules in categories E and C, where E is proved to contain the well known evaluation modules and C to unify highest weight modules, evaluation modul...
متن کاملMullineux involution and twisted affine Lie algebras
We use Naito-Sagaki’s work [S. Naito & D. Sagaki, J. Algebra 245 (2001) 395–412, J. Algebra 251 (2002) 461–474] on LakshmibaiSeshadri paths fixed by diagram automorphisms to study the partitions fixed by Mullineux involution. We characterize the set of Mullineux-fixed partitions in terms of crystal graph of basic representations of twisted affine Lie algebras of type A (2) 2l and of type D (2) ...
متن کاملOn certain categories of modules for affine Lie algebras
In this paper, we re-examine certain integrable modules of Chari-Presslely for an (untwisted) affine Lie algebra ĝ by exploiting basic formal variable techniques. We define and study two categories E and C of ĝ-modules using generating functions, where E contains evaluation modules and C unifies highest weight modules, evaluation modules and their tensor product modules, and we classify integra...
متن کاملAnnihilating Fields of Standard Modules for Affine Lie Algebras
Given an affine Kac-Moody Lie algebra g̃[σ] of arbitrary type, we determine certain minimal sets of annihilating fields of standard g̃[σ]-modules. We then use these sets in order to obtain a characterization of standard g̃[σ]modules in terms of irreducible loop g̃[σ]-modules, which proves to be a useful tool for combinatorial constructions of bases for standard g̃[σ]-modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2002
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2002.v9.n4.a4