von Neumann’s trace inequality for Hilbert–Schmidt operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The trace inequality and eigenvalue estimates for Schrödinger operators

© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

A determinant inequality and log-majorisation for operators

‎Let $lambda_1,dots,lambda_n$  be positive real numbers such that $sum_{k=1}^n lambda_k=1$. In this paper, we prove that for any positive operators $a_1,a_2,ldots, a_n$ in semifinite von Neumann algebra $M$ with faithful normal trace that $t(1)

متن کامل

Logarithmic Sobolev Trace Inequality

A logarithmic Sobolev trace inequality is derived. Bounds on the best constant for this inequality from above and below are investigated using the sharp Sobolev inequality and the sharp logarithmic Sobolev inequality. Logarithmic Sobolev inequalities capture the spirit of classical Sobolev inequalities with the logarithm function replacing powers, and they can be considered as limiting cases of...

متن کامل

Trace class operators and Hilbert-Schmidt operators

If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...

متن کامل

Von Neumann’s Inequality for Commuting Weighted Shifts

We show that every multivariable contractive weighted shift dilates to a tuple of commuting unitaries, and hence satisfies von Neumann’s inequality. This answers a question of Lubin and Shields. We also exhibit a closely related 3-tuple of commuting contractions, similar to Parrott’s example, which does not dilate to a 3-tuple of commuting unitaries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expositiones Mathematicae

سال: 2021

ISSN: 0723-0869

DOI: 10.1016/j.exmath.2020.05.001