Volume growth of submanifolds and the Cheeger isoperimetric constant
نویسندگان
چکیده
منابع مشابه
Cheeger Constants of Surfaces and Isoperimetric Inequalities
We show that the if the isoperimetric profile of a bounded genus non-compact surfaces grows faster than √ t, then it grows at least as fast as a linear function. This generalizes a result of Gromov for simply connected surfaces. We study the isoperimetric problem in dimension 3. We show that if the filling volume function in dimension 2 is Euclidean, while in dimension 3 is sub-Euclidean and th...
متن کاملan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولSubmanifolds, Isoperimetric Inequalities and Optimal Transportation
The aim of this paper is to prove isoperimetric inequalities on submanifolds of the Euclidean space using mass transportation methods. We obtain a sharp “weighted isoperimetric inequality” and a nonsharp classical inequality similar to the one obtained in [Mi-Si]. The proof relies on the description of a solution of the problem of Monge when the initial measure is supported in a submanifold and...
متن کاملCheeger Isoperimetric Constants of Gromov-hyperbolic Spaces with Quasi-poles
Let X be a non-compact complete manifold (or a graph) which admits a quasi-pole and has bounded local geometry. Suppose that X is Gromov-hyperbolic and the diameters (for a fixed Gromov metric) of the connected components of X(∞) have a positive lower bound. Under these assumptions we show that X has positive Cheeger isoperimetric constant. Examples are also constructed to show that the Cheeger...
متن کاملEvery Graph with a Positive Cheeger Constant Contains a Tree with a Positive Cheeger Constant
It is shown that every (innnite) graph with a positive Cheeger constant contains a tree with a positive Cheeger constant. Moreover, for every nonnegative integer k there is a unique connected graph T(k) that has Cheeger constant k, but removing any edge from it reduces the Cheeger constant. This minimal graph, T(k), is a tree, and every graph G with Cheeger constant h(G) > k has a spanning fore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2013
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2013-11664-3