Volume Estimates and Classification Theorem for Constant Weighted Mean Curvature Hypersurfaces
نویسندگان
چکیده
منابع مشابه
Rigidity and Sharp Stability Estimates for Hypersurfaces with Constant and Almost-constant Nonlocal Mean Curvature
We prove that the boundary of a (not necessarily connected) bounded smooth set with constant nonlocal mean curvature is a sphere. More generally, and in contrast with what happens in the classical case, we show that the Lipschitz constant of the nonlocal mean curvature of such a boundary controls its C-distance from a single sphere. The corresponding stability inequality is obtained with a shar...
متن کاملConstant mean curvature hypersurfaces foliated by spheres ∗
We ask when a constant mean curvature n-submanifold foliated by spheres in one of the Euclidean, hyperbolic and Lorentz–Minkowski spaces (En+1, Hn+1 or Ln+1), is a hypersurface of revolution. In En+1 and Ln+1 we will assume that the spheres lie in parallel hyperplanes and in the case of hyperbolic space Hn+1, the spheres will be contained in parallel horospheres. Finally, Riemann examples in L3...
متن کاملConstant Mean Curvature Hypersurfaces with Constant Δ-invariant
We completely classify constant mean curvature hypersurfaces (CMC) with constant δ-invariant in the unit 4-sphere S 4 and in the Euclidean 4-space E 4 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Geometric Analysis
سال: 2020
ISSN: 1050-6926,1559-002X
DOI: 10.1007/s12220-020-00413-2