Volume Data Denoising via Extended Weighted Least Squares
نویسندگان
چکیده
منابع مشابه
Resurrecting Weighted Least Squares
This paper shows how asymptotically valid inference in regression models based on the weighted least squares (WLS) estimator can be obtained even when the model for reweighting the data is misspecified. Like the ordinary least squares estimator, the WLS estimator can be accompanied by heterokedasticty-consistent (HC) standard errors without knowledge of the functional form of conditional hetero...
متن کاملWeighted Least Squares and Adaptive Least Squares: Further Empirical Evidence
This paper compares ordinary least squares (OLS), weighted least squares (WLS), and adaptive least squares (ALS) by means of a Monte Carlo study and an application to two empirical data sets. Overall, ALS emerges as the winner: It achieves most or even all of the efficiency gains of WLS over OLS when WLS outperforms OLS, but it only has very limited downside risk compared to OLS when OLS outper...
متن کاملWeighted total least squares formulated by standard least squares theory
This contribution presents a simple, attractive, and exible formulation for the weighted total least squares (WTLS) problem. It is simple because it is based on the well-known standard least squares theory; it is attractive because it allows one to directly use the existing body of knowledge of the least squares theory; and it is exible because it can be used to a broad eld of applications in t...
متن کاملUnifying Least Squares, Total Least Squares and Data Least Squares
The standard approaches to solving overdetermined linear systems Ax ≈ b construct minimal corrections to the vector b and/or the matrix A such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to b, while in data least squares (DLS) it is restricted to A. In scaled total least squares (Scaled TLS) [15], corrections to both b and A are allowed, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2018.2886224