Volterra integral equations: the singular case
نویسندگان
چکیده
منابع مشابه
Solutions for Singular Volterra Integral Equations
0 gi(t, s)[Pi(s, u1(s), u2(s), · · · , un(s)) + Qi(s, u1(s), u2(s), · · · , un(s))]ds, t ∈ [0, T ], 1 ≤ i ≤ n where T > 0 is fixed and the nonlinearities Pi(t, u1, u2, · · · , un) can be singular at t = 0 and uj = 0 where j ∈ {1, 2, · · · , n}. Criteria are offered for the existence of fixed-sign solutions (u∗1, u ∗ 2, · · · , u ∗ n) to the system of Volterra integral equations, i.e., θiu ∗ i (...
متن کاملWeakly Singular Volterra and Fredholm-volterra Integral Equations
Some existence and uniqueness theorems are established for weakly singular Volterra and Fredholm-Volterra integral equations in C[a, b]. Our method is based on fixed point theorems which are applied to the iterated operator and we apply the fiber Picard operator theorem to establish differentiability with respect to parameter. This method can be applied only for linear equations because otherwi...
متن کاملConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
متن کاملDiscretization of Volterra Integral Equations
We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 2003
ISSN: 0385-4035
DOI: 10.14492/hokmj/1350657530