Vesicular Release of L- and D-Aspartate from Hippocampal Nerve Terminals: Immunogold Evidence~!2008-09-01~!2008-10-15~!2008-12-05~!

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vesicular Release of L- and D-Aspartate from Hippocampal Nerve Termi- nals: Immunogold Evidence

Glutamate is established as the most important excitatory transmitter in the brain. The transmitter status of aspartate is debated. There is evidence that aspartate is released from nerve terminals by exocytosis. However, release through excitatory amino acid transporters (EAATs) could be an alternative mechanism. We further investigated this by use of light and quantitative electron microscopi...

متن کامل

Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus.

To elucidate the role of aspartate as a signal molecule in the brain, its localization and those of related amino acids were examined by light and electron microscopic quantitative immunocytochemistry using antibodies specifically recognizing the aldehyde-fixed amino acids. Rat hippocampal slices were incubated at physiological and depolarizing [K+] before glutaraldehyde fixation. At normal [K+...

متن کامل

M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals.

KCNQ subunits encode for the M current (I(KM)), a neuron-specific voltage-dependent K+ current with a well established role in the control of neuronal excitability. In this study, by means of a combined biochemical, pharmacological, and electrophysiological approach, the role of presynaptic I(KM) in the release of previously taken up tritiated norepineprine (NE), GABA, and d-aspartate (d-ASP) f...

متن کامل

Activation of neurotransmitter release in hippocampal nerve terminals during recovery from intracellular acidification.

Intracellular pH may be an important variable regulating neurotransmitter release. A number of pathological conditions, such as anoxia and ischemia, are known to influence intracellular pH, causing acidification of brain cells and excitotoxicity. We examined the effect of acidification on quantal glutamate release. Although acidification caused only modest changes in release, recovery from acid...

متن کامل

Diadenosine polyphosphates facilitate the evoked release of acetylcholine from rat hippocampal nerve terminals.

Diadenosine polyphosphates are present in synaptic vesicles, are released upon nerve stimulation and possess membrane receptors, namely in presynaptic terminals. However, the role of diadenosine polyphosphates to control neurotransmitter release in the CNS is not known. We now show that diadenosine pentaphosphate (Ap(5)A, 3-100 microM) facilitated in a concentration dependent manner the evoked ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Open Neuroscience Journal

سال: 2008

ISSN: 1874-0820

DOI: 10.2174/1874082000802010051