Vehicle Detection Based on Probability Hypothesis Density Filter
نویسندگان
چکیده
منابع مشابه
Vehicle Detection Based on Probability Hypothesis Density Filter
In the past decade, the developments of vehicle detection have been significantly improved. By utilizing cameras, vehicles can be detected in the Regions of Interest (ROI) in complex environments. However, vision techniques often suffer from false positives and limited field of view. In this paper, a LiDAR based vehicle detection approach is proposed by using the Probability Hypothesis Density ...
متن کاملMultiple Vehicle Cooperative Localization with Spatial Registration Based on a Probability Hypothesis Density Filter
This paper studies the problem of multiple vehicle cooperative localization with spatial registration in the formulation of the probability hypothesis density (PHD) filter. Assuming vehicles are equipped with proprioceptive and exteroceptive sensors (with biases) to cooperatively localize positions, a simultaneous solution for joint spatial registration and state estimation is proposed. For thi...
متن کاملTrajectory probability hypothesis density filter
This paper presents the probability hypothesis density (PHD) filter for sets of trajectories. The resulting filter, which is referred to as trajectory probability density filter (TPHD), is capable of estimating trajectories in a principled way without requiring to evaluate all measurement-to-target association hypotheses. As the PHD filter, the TPHD filter is based on recursively obtaining the ...
متن کاملProbability Hypothesis Density Filter Based on Gaussian-Hermite Numerical Integration
This work addresses the multi-target tracking problem in the nonlinear Gaussian system. One probability hypothesis density filtering algorithm based on GaussianHermite numerical integration is proposed. In order to calculate integrations in the Gaussian mixture probability hypothesis density filter, the Gaussian-Hermite numerical integration method is used to approximate the integration. In the...
متن کاملComputation-distributed probability hypothesis density filter
Particle probability hypothesis density filtering has become a promising approach for multi-target tracking due to its capability of handling an unknown and time-varying number of targets in a nonlinear, non-Gaussian system. However, its computational complexity linearly increases with the number of obtained observations and the number of particles, which can be very time consuming, particularl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2016
ISSN: 1424-8220
DOI: 10.3390/s16040510