Veech Groups of Loch Ness Monsters

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Veech Groups of Loch Ness Monsters

— We classify Veech groups of tame non-compact flat surfaces. In particular we prove that all countable subgroups of GL+(2, R) avoiding the set of mappings of norm less than 1 appear as Veech groups of tame non-compact flat surfaces which are Loch Ness monsters. Conversely, a Veech group of any tame flat surface is either countable, or one of three specific types. Résumé. — Nous classifions les...

متن کامل

The Case for the Loch Ness “Monster”: The Scientific Evidence

Loch Ness Monsters (Nessies) are–if they exist–animals of a species either not yet known to science or known but thought to have been long extinct. Much controversy has concerned eyewitness testimonies and photographs whose relevance and validity are uncertain. However, there also exists a body of objective evidence that critics have been unable to gainsay: the Dinsdale film; numerous sonar ech...

متن کامل

Infinitely Generated Veech Groups

We give a positive response to a question of W. Veech: Infinitely generated Veech groups do exist.

متن کامل

Veech Groups and Polygonal Coverings

We discuss branch points of a ne coverings and their e ects on Veech groups. In particular, this allows us to show that even if one polygon tiles another, the respective Veech groups are not necessarily commensurable. We also show that there is no universal bound on the number of Teichm uller disks passing through the same point of Teichm uller space and having incommensurable lattice Veech g...

متن کامل

Geometry of Infinitely Generated Veech Groups

Veech groups uniformize Teichmüller geodesics in Riemann moduli space. We gave examples of infinitely generated Veech groups; see Duke Math. J. 123 (2004), 49–69. Here we show that the associated Teichmüller geodesics can even have both infinitely many cusps and infinitely many infinite ends.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2011

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2625