Vector Valued Inequalities for Strongly Singular Calderón-Zygmund Operators
نویسندگان
چکیده
منابع مشابه
Weighted norm inequalities for Toeplitz type operators associated to generalized Calderón–Zygmund operators
Let [Formula: see text] be a generalized Calderón-Zygmund operator or [Formula: see text] ( the identity operator), let [Formula: see text] and [Formula: see text] be the linear operators, and let [Formula: see text]. Denote the Toeplitz type operator by [Formula: see text]where [Formula: see text] and [Formula: see text] is fractional integral operator. In this paper, we establish the sharp ma...
متن کاملWeighted norm inequalities for multilinear Calderón-Zygmund operators in generalized Morrey spaces
In this paper, the authors study the boundedness of multilinear Calderón-Zygmund singular integral operators and their commutators in generalized Morrey spaces.
متن کاملBilinear Square Functions and Vector-Valued Calderón-Zygmund Operators
Boundedness results for bilinear square functions and vector-valued operators on products of Lebesgue, Sobolev, and other spaces of smooth functions are presented. Bilinear vector-valued Calderón-Zygmund operators are introduced and used to obtain bounds for the optimal range of estimates in target Lebesgue spaces including exponents smaller than one.
متن کاملSome BMO estimates for vector-valued multilinear singular integral operators
Let b ∈ BMO(Rn) and T be the Calderón–Zygmund singular integral operator. The commutator [b,T ] generated by b and T is defined as [b,T ]( f )(x) = b(x)T ( f )(x)−T (b f )(x). By using a classical result of Coifman et al [8], we know that the commutator [b,T ] is bounded on Lp(Rn) for 1 < p < ∞. Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Iberoamericana
سال: 1986
ISSN: 0213-2230
DOI: 10.4171/rmi/42