Vector Fields on Factorial Schemes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

Factorial Markov Random Fields

In this paper we propose an extension to the standard Markov Random Field (MRF) model in order to handle layers. Our extension, which we call a Factorial MRF (FMRF), is analogous to the extension from Hidden Markov Models (HMM’s) to Factorial HMM’s. We present an efficient EM-based algorithm for inference on Factorial MRF’s. Our algorithm makes use of the fact that layers are a priori independe...

متن کامل

Vector Fields on Manifolds

where n = dim M and 6» = ith Betti number of M ( = dim of Hi(M; Q)). Thus the geometric property of M having a nonzero vector field is expressed in terms of the algebraic invariant xM. We will discuss extensions of this idea to vector ^-fields, fields of ^-planes, and foliations of manifolds. All manifolds considered will be connected, smooth and without boundary; all maps will be continuous. F...

متن کامل

Vector Fields on Spheres

In this paper we will address the question of how many nonvanishing, linearly independent tangent vector fields can exist on a sphere Sn−1 ⊆ R. By this we mean the following, a tangent vector field on Sn−1 = {x ∈ R : ‖x‖ = 1} is a map v : Sn−1 → R such that v(x) ⊥ x for all x ∈ Sn−1. However, by assumption v is nonvanishing, so we can normalize such that ‖v(x)‖ = 1 and we obtain a map v : Sn−1 ...

متن کامل

Vector Fields on Spheres

This paper presents a solution to the problem of finding the maximum number of linearly independent vector fields that can be placed on a sphere. To produce the correct upper bound, we make use of K-theory. After briefly recapitulating the basics of K-theory, we introduce Adams operations and compute the K-theory of the complex and real projective spaces. We then define the characteristic class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1995

ISSN: 0021-8693

DOI: 10.1006/jabr.1995.1081