Variational balance models for the three-dimensional Euler–Boussinesq equations with full Coriolis force
نویسندگان
چکیده
We derive a semi-geostrophic variational balance model for the three-dimensional Euler–Boussinesq equations on nontraditional f-plane under rigid lid approximation. The is obtained by small Rossby number expansion in Hamilton principle, with no other approximations made. allow fully non-hydrostatic flow and do not neglect horizontal components of Coriolis parameter; that is, we make so-called “traditional approximation.” resulting models have same structure as “L1 model” primitive equations: kinematic relation, prognostic equation tracer field, an additional scalar field over two-dimensional domain, which linked to undetermined constant integration thermal wind relation. relation elliptic assumption stable stratification sufficiently fluctuations all fields.
منابع مشابه
Shallow water equations with a complete Coriolis force and topography
This paper derives a set of two dimensional equations describing a thin inviscid fluid layer flowing over topography in a frame rotating about an arbitrary axis. These equations retain various terms involving the locally horizontal components of the angular velocity vector that are discarded in the usual shallow water equations. The obliquely rotating shallow water equations are derived both by...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولError analysis of a projection method for the Navier–Stokes equations with Coriolis force
In this paper a projection method for the Navier–Stokes equations with Coriolis force is considered. This time-stepping algorithm takes into account the Coriolis terms both on prediction and correction steps. We study the accuracy of its semi-discretized form and show that the velocity is weakly first-order approximation and the pressure is weakly order 1 2 approximation. Mathematics Subject Cl...
متن کاملForce and moment balance equations for geometric variational problems on curves.
We consider geometric variational problems for a functional defined on a curve in a three-dimensional space. The functional is assumed to be written in a form invariant under the group of Euclidean motions. We present the Euler-Lagrange equations as equilibrium equations for the internal force and moment. Examples are discussed to illustrate our approach. This form of the equations particularly...
متن کاملVariational models for the incompressible Euler equations
where ν is the unit exterior normal to ∂D. If v = (v, . . . , v) : [0, T ] ×D → R, then (adopting the summation convention) div v = ∂jv is the spatial divergence of v, ∇v is the spatial gradient, and ( v · ∇ ) v is the vector in R whose i-th component is given by v∂jv . Hence, (1.1) is a system of (d + 1) equations for the (d + 1) unknowns (v, . . . , v, p), where p : [0, T ] ×D → R physically ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2021
ISSN: ['1527-2435', '1089-7666', '1070-6631']
DOI: https://doi.org/10.1063/5.0053092