Variation of measures of maximal $ u $-entropy

نویسندگان

چکیده

In this paper, we study the variation of ergodic measures maximal $ u $-entropy among set diffeomorphisms factoring over Anosov and having c $-mostly contracting center. By using concept skeleton introduced in [6] prove that number such is upper semi-continuous C^1 $-topology. We also give an example to show how these collapse under small perturbations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Measures of Maximal Relative Entropy

Given an irreducible subshift of finite type X , a subshift Y , a factor map π : X → Y , and an ergodic invariant measure ν on Y , there can exist more than one ergodic measure on X which projects to ν and has maximal entropy among all measures in the fiber, but there is an explicit bound on the number of such maximal entropy preimages.

متن کامل

Maximal-entropy random walk unifies centrality measures

This paper compares a number of centrality measures and several (dis-)similarity matrices with which they can be defined. These matrices, which are used among others in community detection methods, represent quantities connected to enumeration of paths on a graph and to random walks. Relationships between some of these matrices are derived in the paper. These relationships are inherited by the ...

متن کامل

Maximal entropy measures for Viana maps

In this note we construct measures of maximal entropy for a certain class of maps with critical points. The main application of our result is the existence of measures of maximal entropy for the so-called Viana maps.

متن کامل

Measures of Maximal Entropy for Random Β-expansions

Let β > 1 be a non-integer. We consider β-expansions of the form ∑∞ i=1 di βi , where the digits (di)i≥1 are generated by means of a random map Kβ defined on {0, 1}N× [0, bβc/(β − 1)]. We show that Kβ has a unique measure νβ of maximal entropy log(1 + bβc). Under this measure, the digits (di)i≥1 form a uniform Bernoulli process, and the projection of this measure on the second coordinate is an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2023

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2023034