منابع مشابه
Computing tolerance interval for binomial random variable
Tolerance interval is a random interval that contains a proportion of the population with a determined confidence level and is applied in many application fields such as reliability and quality control. In this educational paper, we investigate different methods for computing tolerance interval for the binomial random variable using the package Tolerance in statistical software R.
متن کاملVariable selection in high-dimension with random designs and orthogonal matching pursuit
The performance of orthogonal matching pursuit (OMP) for variable selection is analyzed for random designs. When contrasted with the deterministic case, since the performance is here measured after averaging over the distribution of the design matrix, one can have far less stringent sparsity constraints on the coefficient vector. We demonstrate that for exact sparse vectors, the performance of ...
متن کاملStochastic matching pursuit for Bayesian variable selection
This article proposes a stochastic version of the matching pursuit algorithm for Bayesian variable selection in linear regression. In the Bayesian formulation, the prior distribution of each regression coefficient is assumed to be a mixture of a point mass at 0 and a normal distribution with zero mean and a large variance. The proposed stochastic matching pursuit algorithm is designed for sampl...
متن کاملVariable Metric Quasi-Fejér Monotonicity∗
The notion of quasi-Fejér monotonicity has proven to be an efficient tool to simplify and unify the convergence analysis of various algorithms arising in applied nonlinear analysis. In this paper, we extend this notion in the context of variable metric algorithms, whereby the underlying norm is allowed to vary at each iteration. Applications to convex optimization and inverse problems are demon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2015
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-015-0908-z