VALUE DISTRIBUTION OF DIFFERENCE OPERATOR ON MEROMORPHIC FUNCTIONS
نویسندگان
چکیده
منابع مشابه
Some results on value distribution of the difference operator
In this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^{n}(z)f(z+c))=E_k(1, g^{n}(z)g(z+c))$. Then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...
متن کاملFixed Points of Difference Operator of Meromorphic Functions
Let f be a transcendental meromorphic function of order less than one. The authors prove that the exact difference Δf =(z+1)-f(z) has infinitely many fixed points, if a ∈ ℂ and ∞ are Borel exceptional values (or Nevanlinna deficiency values) of f. These results extend the related results obtained by Chen and Shon.
متن کاملsome results on value distribution of the difference operator
in this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $e_k(1, f^{n}(z)f(z+c))=e_k(1, g^{n}(z)g(z+c))$. then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...
متن کاملUniqueness And Value Distribution Of Differences Of Meromorphic Functions∗
The purpose of the paper is to study the uniqueness problems of difference polynomials of meromorphic functions sharing a small function. The results of the paper improve and generalize the recent results due to Liu, et al. [11] and Liu, et al. [12].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2014
ISSN: 1015-8634
DOI: 10.4134/bkms.2014.51.5.1291