Valuations and Busemann–Petty type problems
نویسندگان
چکیده
منابع مشابه
Valuations and Busemann–Petty Type Problems
Projection and intersection bodies define continuous and GL(n) contravariant valuations. They played a critical role in the solution of the Shephard problem for projections of convex bodies and its dual version for sections, the Busemann– Petty problem. We consider the question whether ΦK ⊆ ΦL implies V (K) ≤ V (L), where Φ is a homogeneous, continuous operator on convex or star bodies which is...
متن کاملRepresenting asymmetric decision problems using coarse valuations
A valuation-based system approach to knowledge representation has shown its advantages in improving computational efficiency and in allowing many decision models including belief networks. This study applies the Dempster–Shafer theory of belief functions and extends its framework to allow coarse valuations, which admit incomplete specification of probabilities and utilities and, therefore, are ...
متن کاملValuations on Meromorphic Functions of Bounded Type
The primary purpose of this paper is to show that every valuation on the field of meromorphic functions of bounded type on a finitely sheeted unlimited covering Riemann surface is a point valuation if and only if the same is true on its base Riemann surface. The result is then applied to concrete examples and some related results are obtained. Any valuation on the field M(W) of single valued me...
متن کاملFenchel-type duality for matroid valuations
The weighted matroid intersection problem has recently been extended to the valuated matroid intersection problem: Given a pair of valuated matroids Mi = (V,Bi, ωi) (i = 1, 2) defined on a common ground set V , find a common base B ∈ B1∩B2 that maximizes ω1(B)+ω2(B). This paper develops a Fenchel-type duality theory related to this problem with a view to establishing a convexity framework for n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2008
ISSN: 0001-8708
DOI: 10.1016/j.aim.2008.05.001