Utile cum dulci

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI-MODAL UTILE DISTINCTIONS Multi-Modal Utile Distinctions

We introduce Multi-Modal Utility Trees (MMU), an algorithm for autonomously learning decision treebased state abstractions in Partially Observable Markov Decision Processes with multi-modal observations. MMU builds the trees using the Kolmogorov-Smirnov statistical test. Additionally, MMU incorporates the ability to perform online tree restructuring, enabling it to build and maintain a compact ...

متن کامل

Approved cum laude.

2000 Degree in Mathematics at the University of Pisa. Dissertation with title " Polyhedral decomposition of hyperbolic manifolds with geodesic boundary " , supervisor prof. C. Petro-nio. Approved cum laude. dissertation with title " Deforming triangulations of hyperbolic 3-manifolds with geodesic boundary " , under the supervision of prof. C. Petronio. Approved cum laude. 2005 Non-permanent pos...

متن کامل

Utile or futile: biomarkers in the ICU

Biomarkers complement other clinical information by proving quantitative data regarding a pathophysiological mechanism that can be used for the early diagnosis of a specific disease, to monitor and guide treatment, and to predict the risk of death or other adverse events. The stronger the link between the information provided by the biomarker and the immediate clinical course of action that we ...

متن کامل

Utile Distinctions for Relational Reinforcement Learning

We introduce an approach to autonomously creating state space abstractions for an online reinforcement learning agent using a relational representation. Our approach uses a tree-based function approximation derived from McCallum’s [1995] UTree algorithm. We have extended this approach to use a relational representation where relational observations are represented by attributed graphs [McGovern...

متن کامل

Overcoming Incomplete Perception with Utile Distinction Memory

This paper presents a method by which a reinforcement learning agent can solve the incomplete perception problem using memory. The agent uses a hidden Markov model (HMM) to represent its internal state space and creates memory capacity by splitting states of the HMM. The key idea is a test to determine when and how a state should be split: the agent only splits a state when doing so will help t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Pharmazie

سال: 1871

ISSN: 0365-6233,1521-4184

DOI: 10.1002/ardp.18711950327