Using the weighted area under the net benefit curve for decision curve analysis
نویسندگان
چکیده
منابع مشابه
Using the weighted area under the net benefit curve for decision curve analysis
BACKGROUND Risk prediction models have been proposed for various diseases and are being improved as new predictors are identified. A major challenge is to determine whether the newly discovered predictors improve risk prediction. Decision curve analysis has been proposed as an alternative to the area under the curve and net reclassification index to evaluate the performance of prediction models...
متن کاملLearning Decision Trees Using the Area Under the ROC Curve
ROC analysis is increasingly being recognised as an important tool for evaluation and comparison of classifiers when the operating characteristics (i.e. class distribution and cost parameters) are not known at training time. Usually, each classifier is characterised by its estimated true and false positive rates and is represented by a single point in the ROC diagram. In this paper, we show how...
متن کاملDecision Strategies Maximizing the Area Under the LROC Curve
For the 2-class detection problem (signal absent/present), the likelihood ratio is an ideal observer in that it minimizes Bayes risk for arbitrary costs and it maximizes AUC, the area under the ROC curve. The AUCoptimizing property makes it a valuable tool in imaging system optimization. If one considered a different task, namely, joint detection and localization of the signal, then it would be...
متن کاملRegression Analysis for the Partial Area under the Roc Curve
Performance evaluation of any classification method is fundamental to its acceptance in practice. Evaluation should consider the dependence of a classifier’s accuracy on relevant covariates in addition to its overall accuracy. When developing a classifier with a continuous output that allocates units into one of two groups, receiver operating characteristic (ROC) curve analysis is appropriate. ...
متن کاملDecision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case-control studies
BACKGROUND Decision curve analysis has been introduced as a method to evaluate prediction models in terms of their clinical consequences if used for a binary classification of subjects into a group who should and into a group who should not be treated. The key concept for this type of evaluation is the "net benefit", a concept borrowed from utility theory. METHODS We recall the foundations of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Medical Informatics and Decision Making
سال: 2016
ISSN: 1472-6947
DOI: 10.1186/s12911-016-0336-x