Using the Alpha Geodesic Distance in Shapes K-Means Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Model-based Versus K-means Clustering for the Planar Shapes

‎In some fields‎, ‎there is an interest in distinguishing different geometrical objects from each other‎. ‎A field of research that studies the objects from a statistical point of view‎, ‎provided they are‎ ‎invariant under translation‎, ‎rotation and scaling effects‎, ‎is known as the statistical shape analysis‎. ‎Having some objects that are registered using key points on the outline...

متن کامل

Segmentation of Liver in Low-Contrast Images Using K-Means Clustering and Geodesic Active Contour Algorithms

In this paper, we present an algorithm to segment the liver in low-contrast CT images. As the first step of our algorithm, we define a search range for the liver boundary. Then, the EM algorithm is utilized to estimate parameters of a ‘Gaussian Mixture’ model that conforms to the intensity distribution of the liver. Using the statistical parameters of the intensity distribution, we introduce a ...

متن کامل

Geodesic Distance based Fuzzy Clustering

Clustering is a widely applied tool of data mining to detect the hidden structure of complex multivariate datasets. Hence, clustering solves two kinds of problems simultaneously, it partitions the datasets into cluster of objects that are similar to each other and describes the clusters by cluster prototypes to provide some information about the distribution of the data. In most of the cases th...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Clustering with Transitive Distance and K-Means Duality

Recent spectral clustering methods are a propular and powerful technique for data clustering. These methods need to solve the eigenproblem whose computational complexity is O(n), where n is the number of data samples. In this paper, a non-eigenproblem based clustering method is proposed to deal with the clustering problem. Its performance is comparable to the spectral clustering algorithms but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Phenomena in Complex Systems

سال: 2020

ISSN: 1817-2458,1561-4085

DOI: 10.33581/1561-4085-2020-23-2-251-253