Using Synthetic Tree Data in Deep Learning-Based Tree Segmentation Using LiDAR Point Clouds
نویسندگان
چکیده
Deep learning, neural networks and other data-driven processing techniques are increasingly used in the analysis of LiDAR point cloud data forest environments due to benefits offered accuracy adaptability new environments. One downsides these practical applications is requirement for manually annotated necessary training networks, which can be time consuming costly attain. We develop an approach tree stem segmentation from clouds that uses synthetic a custom simulator, generate large quantities examples without manual human effort. Our simulator captures geometric characteristics stems foliage, automatically-labelled generated semantic algorithm based on PointNet++ architecture. Using evaluations real aerial terrestrial range different sites, we demonstrate our data-trained models out-perform, or provide comparable performance with trained sites when available limited (increases IoU 1–7%). simulation code open-source made research community.
منابع مشابه
Deep learning-based tree classification using mobile LiDAR data
Deep learning-based tree classification using mobile LiDAR data Haiyan Guan, Yongtao Yu, Zheng Ji, Jonathan Li & Qi Zhang To cite this article: Haiyan Guan, Yongtao Yu, Zheng Ji, Jonathan Li & Qi Zhang (2015) Deep learning-based tree classification using mobile LiDAR data, Remote Sensing Letters, 6:11, 864-873, DOI: 10.1080/2150704X.2015.1088668 To link to this article: http://dx.doi.org/10.108...
متن کاملTree Detection and Delineation from LiDAR point clouds using RANSAC
As Light Detection And Ranging (LiDAR) (point) data sets increase in resolution, earth scientists become more interested in detecting and delineating trees using LiDAR. The majority of conventional methods which detect and delineate trees convert point data into gridded surfaces. Unfortunately, this conversion process has the potential to introduce error. We improve a point-based geometric mode...
متن کاملBig Data Regression Using Tree Based Segmentation
Scaling regression to large datasets is a common problem in many application areas. We propose a two step approach to scaling regression to large datasets. Using a regression tree (CART) to segment the large dataset constitutes the first step of this approach. The second step of this approach is to develop a suitable regression model for each segment. Since segment sizes are not very large, we ...
متن کاملA Sensitivity analysis for a novel individual tree segmentation algorithm using 3D lidar point cloud data
LiDAR sampling or full-area coverage is deemed as favorable means to achieve timely and robust characterizations of vertically distributed forest attributes. So far, two main strategies on the use of LiDAR data in forestry are reported: area-based method (ABA) and individual tree method (ITC). Recently, a novel 3D segmentation approach has been developed for extracting single trees from LIDAR d...
متن کاملEfficient tree modeling from airborne LiDAR point clouds
Modeling real-world trees is important in many application areas, including computer graphics, botany and forestry. An example of a modeling method is reconstruction from light detection and ranging (LiDAR) scans. In contrast to terrestrial LiDAR systems, airborne LiDAR systems – even current high-resolution systems – capture only very few samples on tree branches, which makes the reconstructio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2023
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs15092380