Using Computational and Mechanical Models to Study Animal Locomotion
نویسندگان
چکیده
منابع مشابه
Using computational and mechanical models to study animal locomotion.
Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms' performance and improving the design of vehicles moving through air and water and on land. This work has a...
متن کاملUsing robots to emulate and investigate agile animal locomotion
The graceful and agile movements of animals are difficult to analyze and emulate because locomotion is the result of a complex interplay of many components: the central and peripheral nervous systems, the musculoskeletal system, and the environment. The goals of biorobotics are to take inspiration from biological principles to design robots that match the agility of animals, and to use robots a...
متن کاملMechanical, Rheological and Computational Study of PVP/PANI with Additives
Polyvinylpyrrolidone/polyaniline emeraldine salt (PVP/PANI) with additives (TiO2, ZnO, NaCl, and Na2SO4) was synthesized via oxidative in situ polymerization. Because of using PVP/PANI as a protective membrane layer and its applications in an electrical device, we investigated the mechanical and rheological properties of PVP/PANI and other composites in orde...
متن کاملAnimal Locomotion
Recent experimental and computational studies of swimming hydrodynamics have contributed significantly to our understanding of how animals swim, but much remains to be done. Ten questions are presented here as an avenue to discuss some of the arenas in which progress still is needed and as a means of considering the technical approaches to address these questions. 1. What is the threedimensiona...
متن کاملDopamine/adenosine interactions related to locomotion and tremor in animal models: possible relevance to parkinsonism.
Adenosine A(2A) antagonists can exert antiparkinsonian effects in animal models. Recent experiments studied the ability of MSX-3 (an adenosine A(2A) antagonist) to reverse the locomotor suppression and tremor produced by dopamine antagonists in rats. MSX-3 reversed haloperidol-induced suppression of locomotion, and reduced the tremulous jaw movements induced by haloperidol, pimozide, and reserp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integrative and Comparative Biology
سال: 2012
ISSN: 1540-7063,1557-7023
DOI: 10.1093/icb/ics115