Use of a Bayesian maximum-likelihood classifier to generate training data for brain–machine interfaces
نویسندگان
چکیده
منابع مشابه
Use of a Bayesian maximum-likelihood classifier to generate training data for brain-machine interfaces.
Brain-machine interface decoding algorithms need to be predicated on assumptions that are easily met outside of an experimental setting to enable a practical clinical device. Given present technological limitations, there is a need for decoding algorithms which (a) are not dependent upon a large number of neurons for control, (b) are adaptable to alternative sources of neuronal input such as lo...
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملLearning Maximum Likelihood Semi-Naive Bayesian Network Classifier
In this paper, we propose a technique to construct a sub-optimal semi-naive Bayesian network when given a bound on the maximum number of variables that can be combined into a node. We theoretically show that our approach has a less computation cost when compared with the traditional semi-naive Bayesian network. At the same time, we can obtain a resulting sub-optimal structure according to the m...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولMLgsc: A Maximum-Likelihood General Sequence Classifier
We present software package for classifying protein or nucleotide sequences to user-specified sets of reference sequences. The software trains a model using a multiple sequence alignment and a phylogenetic tree, both supplied by the user. The latter is used to guide model construction and as a decision tree to speed up the classification process. The software was evaluated on all the 16S rRNA g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neural Engineering
سال: 2011
ISSN: 1741-2560,1741-2552
DOI: 10.1088/1741-2560/8/4/046009