Urban Noise Analysis Using Multinomial Logistic Regression
نویسندگان
چکیده
منابع مشابه
Multinomial logistic regression
Multinomial logistic regression is the extension for the (binary) logistic regression when the categorical dependent outcome has more than two levels. For example, instead of predicting only dead or alive, we may have three groups, namely: dead, lost to follow-up, and alive. In the analysis to follow, a reference group has to be chosen for comparison, the appropriate group would be the alive, i...
متن کاملMultinomial Logistic Regression Ensembles
This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the pro...
متن کاملUrban Development as a Continuum: A Multinomial Logistic Regression Approach
Urban development is a complex process influenced by a number of driving forces, including spatial planning, topography and urban economics. Identifying these drivers is crucial for the regulation of urban development and the calibration of predictive models. Existing land-use models generally consider urban development as a binary process, through the identification of built versus non-built a...
متن کاملMultinomial and ordinal logistic regression using PROC LOGISTIC
Logistic regression may be useful when we are trying to model a categorical dependent variable (DV) as a function of one or more independent variables. This paper reviews the case when the DV has more than two levels, either ordered or not, gives and explains SAS R © code for these methods, and illustrates them with examples.
متن کاملMultinomial Logistic Regression with SPSS
Subjects were engineering majors recruited from a freshman-level engineering class from 2007 through 2010. Data were obtained for 256 students. The outcome variable of interest was retention group: Those who were still active in our engineering program after two years of study were classified as persisters. Those who were no longer in our engineering program were classified as having left in go...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Transportation Engineering
سال: 2016
ISSN: 0733-947X,1943-5436
DOI: 10.1061/(asce)te.1943-5436.0000843