Uptake of methylamine and methanol by Pseudomonas sp. strain AM1
نویسندگان
چکیده
منابع مشابه
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, foun...
متن کاملTransport of methylamine by Pseudomonas sp. MA.
Pseudomonas sp. MA grows on methylamines as a sole source of carbon, nitrogen, and energy. The transport of methylamine into the organism was investigated. It was found that this organism possesses an inducible transport system for methylamine having the following physical parameters: pH optimum, 7.2; temperature optimum, 30 to 35 degrees C; Km, 1 to 30 mM; Vmax, 90 to 120 nmol/min per mg (dry ...
متن کاملMethylamine uptake in Pseudomonas species strain MA: utilization of methylamine as the sole nitrogen source.
The uptake of methylamine as the sole nitrogen, but not carbon, source by Pseudomonas sp. strain MA was investigated. Under these growth conditions, a high-affinity, low-capacity uptake system was present having a Km of 16 microM and Vmax of 2 nmol.min-.mg (dry weight) of cells that was competitively inhibited by ammonium chloride. The transport system was induced by growth on succinate with me...
متن کاملUptake of Zinc in Pseudomonas sp. Strain UDG26.
Zinc resistance in Pseudomonas sp. strain UDG26 was inducible. Induction led to enhanced uptake of the metal. A zinc-sensitive variant (UDG86) took up significantly less metal ion than the resistant one did. The affinity of uninduced and sensitive cells to zinc was less than that of resistant, induced cells. Metal accumulation by induced cells was not inhibited by azide, while 2,4-dinitrophenol...
متن کاملGlyphosate catabolism by Pseudomonas sp. strain PG2982.
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 1983
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.154.3.1168-1173.1983