Upper bounding rainbow connection number by forest number

نویسندگان

چکیده

A path in an edge-colored graph is rainbow if no two edges of it are colored the same, and rainbow-connected there a between each pair its vertices. The minimum number colors needed to rainbow-connect G connection G, denoted by rc(G). simple way color spanning tree with distinct then re-use any these remaining G. This proves that rc(G)≤|V(G)|−1. We ask whether stronger tree-like structures coloring than implied above trivial argument. For instance, possible find upper bound t(G)−1 for rc(G), where t(G) vertices largest induced G? answer turns out be negative, as counter-examples show even c⋅t(G) not rc(G) given constant c. In this work we consider forest f(G), maximum instead t(G), surprisingly do get bound. More specifically, prove rc(G)≤f(G)+2. Our result indicates was suggested based

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Connection Number and Connectivity

The rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges, so that every pair of vertices is connected by at least one path in which no two edges are colored the same. Our main result is that rc(G) ≤ dn2 e for any 2-connected graph with at least three vertices. We conjecture that rc(G) ≤ n/κ + C for a κ-connected graph G of order n, w...

متن کامل

Rainbow Connection Number and Radius

The rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of its vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) ≤ r(r + 2). We demonstrate that this bound is the best possible for rc(G) as a functi...

متن کامل

On Rainbow Connection Number and Connectivity

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we investigate the relationship of rainbow connection number with vertex and edge connectivity. It is already known that for a connected graph with minimum...

متن کامل

Rainbow Connection Number of the Thorn Graph

A path in an edge colored graph is said to be a rainbow path if every edge in this path is colored with the same color. The rainbow connection number of G, denoted by rc(G), is the smallest number of colors needed to color its edges, so that every pair of its vertices is connected by at least one rainbow path. A rainbow u − v geodesic in G is a rainbow path of length d(u, v), where d(u, v) is t...

متن کامل

Graphs with rainbow connection number two

An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where (

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2022

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2022.112829